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ABSTRACT 

TOUGH2 and iTOUGH2 are used to conduct 
forward and inverse simulations of a large-scale 
infiltration experiment at the Maricopa Agricultural 
Center (MAC) near Phoenix, Arizona. Three site 
representations are considered: uniform horizontal 
layers, layers composed of uniform segments, and 
layers having randomly varying properties. Due to a 
paucity of hydraulic parameter measurements at the 
MAC, these are inferred from soil compositional data 
using generic data bases and pedotransfer functions. 
Variogram analyses of these data support the laterally 
nonuniform and randomly variable site 
representations. To reproduce observed water 
contents it is necessary to modify the inferred 
hydraulic parameters through inverse modeling based 
on preliminary sensitivity and error analyses. Model 
discrimination criteria are used to rank the three 
calibrated site models. Layers composed of uniform 
segments are ranked highest due to their superior 
performance and relative simplicity. The choice 
representation is validated by using it to reproduce 
water contents during another infiltration experiment. 

INTRODUCTION 

Analyses of water flow in the vadose zone are often 
hampered by lack of adequate site data. Without such 
data, it is difficult to develop detailed predictive 
models of unsaturated flow in heterogeneous soils. 
Under what circumstances can relatively simple 
models, based on data that are relatively easy to 
obtain, provide reliable predictions of flow in the 
vadose zone? What levels of hydrogeological 
complexity and detail are required to reproduce 
observed groundwater flow at a vadose zone site? 
How reliably can flow at a site be reproduced by 
means of simple models, and how simple can such 
models be? These questions are acutely relevant to 
those charged with environmental safety assessment 
in common situations where time and resources are 
severely limited. To address them, we conduct 
comparative simulations of a large-scale field 
infiltration experiment at the Maricopa Agricultural 
Center (MAC) near Phoenix, Arizona, using site 
models of increasing complexity.  

EXPERIMENTS AND SITE 
CHARACTERIZATION 

Brief Description of Infiltration Experiments 
Three large-scale infiltration experiments were 
conducted at the MAC (Young et al., 1999) by 
applying water uniformly at a controlled rate to a 50 
× 50 m2 area using a drip irrigation system. The area 
was covered by a 60 × 60 m2 liner to minimize 
evaporation. We consider the first and last of these 
three experiments. Experiment 1 lasted 93 days 
starting April 28 and ending July 30, 1997. Water 
was applied at an average rate of 1.85 cm/day to the 
field for 24 days, with a bromide tracer added for the 
first 15 days at a mean concentration of 31.6 ppm. 
The water application period was followed by a 
redistribution period of 69 days. Experiment 3 lasted 
more than 200 days; we consider the first 56 days 
starting April 24 and ending June 19, 2001. Water 
was applied at an average rate of 2.66 cm/day for 28 
days and redistribution measured for the following 28 
days. Monitoring took place across the site using a 
variety of devices among which we concentrate on 
neutron probe readings of water content taken in 9 
boreholes down to a depth of 14 meters at 0.25 m 
intervals (see Figure 1). 

Site characterization and alternative 
representations 
The MAC site is situated in a basin filled with 
alluvial deposits ranging from hundreds to thousands 
of feet in depth. Down to a depth of 15 m the soils 
consist of sand, sandy loam, and loamy sand. 
Variograms of percent sand, silt, and clay show a 
vertical range of 2 m, which provides support for a 
layered representation of the soils; the same is 
suggested by a visual examination of soil profiles in 
boreholes and neutron count ratios, which correlate 
with soil compositional data (Wang, 2002). The 
neutron data reveal a perched water table at a depth 
of about 13 m. Hence it appears sensible to represent 
the upper 13 m of the vadose zone by 8–9 layers 
consisting of three distinct soil types (sandy loam, 
gravelly loam sand, and sand) as illustrated in 
Figure 1.  
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Figure 1.  Local stratigraphy based on soil and 

neutron data (scale in meters). 

Omni-directional variograms of percent sand, silt and 
clay in soil intervals of 30 cm down to 1.8 m exhibit 
horizontal ranges of 20 - 25 m. Hence another 
sensible site model is one in which the layers are 
segmented laterally into uniform zones measuring 20 
– 25 m. Yet another plausible representation is one of 
layers having randomly varying soil compositions, 
with a structure represented by the corresponding 
variograms. 
 
There is a paucity of hydraulic parameter 
measurements at the MAC. We therefore rely on 
pedotransfer functions (Bouma and van Lanen, 1997) 
to translate soil pedologic data into hydraulic 
parameters. We start by ascribing to each uniform 
layer hydraulic parameter values equal to mean 
values of a generic database for the corresponding 
soil class. Wang et al. (2003) considered three such 
databases (RAWLS, Rawls et al., 1982; ROSETTA, 
Schaap and Leij, 1998; CARSEL, Carsel and Parrish, 
1988, and Meyer et al., 1997) and found that one of 
them (CARSEL) gave better reproductions of 
observed behavior at the MAC than the other two. 
We therefore ascribe CARSEL mean values to the 
layers. 
 
Pedologic data associated with individual soil 
samples were translated by Wang (2002) into 
hydraulic parameters using the Rosetta neural 
network software of Schaap et al. (1998). Variograms 
of corresponding base-10 log saturated hydraulic 
conductivity (log Ks) estimates exhibited vertical 
ranges (down to a depth of 15.5 m) of 1 - 2 m, 
horizontal ranges (down to a depth of 1.8 m) of 20 - 
36 m (mostly 20–25 m), sill of about 0.22 and nugget 
effect of about 0.07. This suggests a site 
representation in which log Ks varies randomly within 
each layer about the mean value assigned to it on the 
basis of CARSEL. Random variations about the 

mean are taken to be lognormal with a spherical 
variogram, vertical range of 2 m, horizontal range of 
25 m, and the above sill and nugget values. A single 
random field is generated for each layer using GSLIB 
(Deutsch and Journel, 1998). Point values at the 
centers of grid blocks are assigned to the blocks. All 
other hydraulic parameters remain equal to their 
mean values. 

FORWARD FLOW MODELING 

Forward simulations are conducted using TOUGH2 
(Pruess et al., 1999) by assigning the above mean or 
random hydraulic parameters to each cell of a finite 
difference grid. Cells measure 2.0 m horizontally and 
10 cm vertically, covering a N-S vertical section 13 
m deep and 110 m. The section passes through 
boreholes 402, 422, and 442 (Figure 1). The bottom 
boundary is a water table treated as a zero pressure 
boundary. No flow is allowed to take place across the 
lateral boundaries. During the first 28 days of 
experiment 3, a constant nonzero flux is prescribed 
within the irrigated plot and zero flux measured in 
boreholes 402, 422, and 442 prior to the experiment 
are taken to represent initial conditions. 
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Figure 2.  Forward simulation of water contents 
along N-S uniformly layered transect 
using mean hydraulic parameter values 
from CARSEL at various depths. 

Figure 2 shows the results of forward simulation with 
uniform layers. The computed response (curves) 
captures in a very crude way the observed behavior 
(dots). The quality of the results varies with depth, 
and simulated wetting front arrival times are seen to 
lag by up to ten days behind those measured. 
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Segmented layers belong to one soil class and would 
therefore yield similar results. Forward simulation 
using a random realization of log saturated 
conductivities results in a slightly better reproduction 
of observed water contents. However, none of the 
forward simulations are satisfactory and there is an 
obvious need to calibrate the models against observed 
system behavior outside this plot at the top boundary. 
During the remainder of the experiment, the soil 
surface constitutes a no-flow boundary. Water 
contents  

INVERSE FLOW MODELING 

We use iTOUGH2 (Finsterle, 1999a-b) to calibrate 
our flow models against observed water contents at 
the MAC. The inverse code estimates hydraulic 
parameters by minimizing a weighted sum of squared 
water content and parameter residuals. Weights are 
set equal to inverse variances of water content 
measurement and parameter estimation errors, 
respectively. The standard deviation of a water 
content measurement error is taken to be 10% of the 
measured value. The variance of any mean CARSEL 
parameter is taken to be that of the same parameter in 
the database. In the case of randomly generated 
parameters, the sill and nugget are added to the 
variance. Preliminary analysis shows that model 
results are most sensitive to Ks and the van 
Genuchten (1980) parameters n and α, in that order 
(Table 1). Hence these are the parameters we 
estimate. The scaled sensitivity coefficients in the 
table are defined as: 
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where the standard deviation 
jpσ  of j parameter 

adopted from Meyer's results (1997), m equals to the 
number of temporal data points, and the a priori 

standard deviations 
izσ  of the observation iz  are of 

10% the measured values. Sensitivity analysis shows 
that Ks and n estimates exhibit strong negative 
correlation and that the calibration criterion is not 
very sensitive to Ks. We employ automatic parameter 
selection criteria provided by iTOUGH2 to help 
overcome these difficulties. 
 
As sandy loam at depths 0 - 2 m has different bulk 
densities than do deeper sandy loam layers, we 
estimate its hydraulic properties separately. This 
yields a total of four materials: sandy loam in the top 
layer, sandy loam in deeper layers, gravel loamy sand 
and sand.  
 

Table1. Results of Preliminary Sensitivity Analysis 

Parameters 
Scaled Sensitivity 

Coefficient. 
Sens. of  

Calib. Criterion 

log (ks) LOAM1 1.71E+02 3.92E-01 
log (ks) GSAND 1.29E+02 8.53E-03 
log (ks) LOAM2 3.46E+01 4.58E-02 
log (ks) SAND 5.96E+01 1.34E-01 

log (α) LOAM1 8.00E+00 4.51E-02 
log (α) GSAND 4.02E+00 4.96E-01 
log (α) LOAM2 3.30E+01 9.35E-01 
log (α) SAND 2.13E-01 5.62E-01 

log (λ) LOAM1 1.10E+02 4.33E+00 
log (λ) GSAND 1.15E+02 6.85E+00 
log (λ) LOAM2 3.72E+01 1.25E+00 
log (λ) SAND 5.04E+01 2.07E-01 

NOTE: LOAM1 represents sandy loam in the top 
layer, LOAM2 sandy loam in deeper layers, GSAND 
gravel loamy sand, and SAND sand. ks represents 
permeability and λ=1-1/n, The standard deviation of 
hydraulic parameters from CARSEL database is 
adopted as scaling factor for sensitivity coefficient.  
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Figure 3.  Simulation of water contents during 

infiltration experiment 3 along N-S 
transect using inverse estimates of 
saturated hydraulic conductivity and van 
Genuchten's α  and n. Uniform soil 
layers. 

Figure 3 depicts matches between simulated (curves) 
and measured (dots) water contents along the N-S 
cross-section by considering the soil to consist of 
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horizontally uniform layers. The matches are seen to 
be much better than those obtained prior to inversion 
in Figure 2. While some simulation results fit the data 
well, other are systematically too low or too high. For 
example, water content in the top sandy loam layer in 
borehole 402 is systematically under-predicted, 
whereas in sandy loam and sand layers at depths 6 - 
10 m in boreholes  
 
Variogram analysis has shown that the dominant 
horizontal correlation scale of soil hydraulic 
parameters at the MAC is 20 - 25 m. We therefore 
subdivide the transect into 3 horizontal segments, one 
per borehole. This yields a total of 36 parameters for 
the transect.  
 
Figure 4 compares simulated and observed water 
contents using inverse parameter estimates along the 
transect. The fit is seen to be good in all cases. A 
histogram of residuals (Figure 5) suggests that they 
are close to normal with a near-zero mean and small 
standard deviation. At a confidence level of 95%, 
only 14 out of the 300 residuals are identified as 
outliers.  
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Figure 4.  Simulation of water contents during 
infiltration experiment 3 along N-S 
transect using inverse estimates of 
saturated hydraulic conductivity and van 
Genuchten's α  and n. Segmented layers. 

Figure 6 compares simulated and observed water 
contents following inversion when the layers are 
considered to be randomly heterogeneous. In this 
case we consider each layer to have a spatially 
uniform mean, which we estimate using the above 
inverse procedure. We then superimpose on the 

estimated mean log hydraulic conductivity of each 
layer a random fluctuation, which is not affected by 
the inverse procedure. The result is almost the same 
as that for laterally segmented layers in Figure 5. 
This is so despite a large difference between the 
corresponding permeability estimates, as shown in 
Figure 7. There is little channeling due to a 
pronounced layering effect. 
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Figure 5.  Histogram of differences between 
observed and simulated water contents 
along N-S transect following inversion. 
Segmented layers 
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Figure 6.  Simulation of water contents during 
infiltration experiment 3 along N-S 
transect using inverse estimates of 
saturated hydraulic conductivity and van 
Genuchten's α  and n. Randomly 
heterogeneous layers 
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Figure 7.  Inverse permeability estimates 

corresponding to a) segmented and b) 
randomly heterogeneous layers. 

 
Table 2. Model Quality Criteria. 

2-D N-S models 
Model Quality 

 Criteria Uniform  
layers 

Segmented 
layers 

Randomly 
hetero.  
layers 

D-optimality 5.83E-57 5.50E-179 8.69E-174 

A-optimality 1.96E-03 1.11E-03 2.04E-03 

E-optimality 8.49E-04 2.35E-04 1.11E-03  

Sum of  
weighted  
squared 
residuals 

8.20E+02 2.70E+02 2.631E+02 

Log of the 
latter 

6.11E+02 1.00E+03 9.65E+02 

Akaike -1.20E+03 -1.93E+03 -1.86E+03 

Kashyap -1.04E+03 -1.45E+03 -1.45E+3 

 
 

 
Tables 2 compares the three sets of inverse results. 
The quality of model fit is compared on the basis of a 
D-optimality criterion (determinant of the covariance 
matrix of parameter estimation errors), A-optimality 
criterion (trace of this matrix), E-optimality criterion 
(largest absolute eigenvalue of the same matrix, 
Steinberg and Hunter, 1984), calibration criterion 
(weighted sum of squared residuals) and its 
logarithm. These model fit criteria can be used to 
compare the quality of different models having 
similar structure and number of parameters but not 
models having different structures or numbers of 
parameters. To validly compare the quality of all 
models in Tables 2, we employ formal model 

discrimination criteria due to Akaike (1974) and 
Kashyap (1982) as done previously by Carrera and 
Neuman (1986a-c). The smaller (or more negative) 
are these criteria, the better is the model. Both model 
discrimination criteria identify the uniformly layered 
model as being the worst. The segmented and 
randomly heterogeneous models perform equally 
well. Considering that the randomly heterogeneous 
model is much more complex than the segmented 
model, the latter is our obvious choice for purposes 
of predicting water content variations at the MAC. 
We suspect, however, that a randomly heterogeneous 
model may be a better choice for purposes of 
simulating solute transport at the site. 

CONFIRMATION OF INVERSE MODELING 
RESULTS 

Our choice site representation (segmented layers) and 
inverse hydraulic parameter estimates are based on 
data collected during infiltration experiment 3. We 
use them to simulate water contents at the MAC 
during experiment 1. The good matches between 
simulated and observed water contents in Figure 8 
constitute a confirmation of the calibrated model.  
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Figure 8.  Simulation of water contents during 

experiment 1 along N-S transect 
(boreholes 402, 422, 442) using 
segmented layer model and hydraulic 
parameters obtained from experiment 3.  
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CONCLUSIONS 

Our paper leads to the following conclusions: 
 

1. Hydraulic parameter estimates, obtained 
from a generic database or by means of 
pedotransfer functions, are unable to 
reproduce water contents observed during a 
large-scale infiltration experiment at the 
MAC without calibrating the flow model 
against such observations.  

2. Three site representations are considered: 
uniform horizontal layers, layers composed 
of uniform segments, and layers having 
randomly varying properties. Model 
discrimination criteria identify the 
segmented model as best among the three 
for purposes of predicting water content 
variations at the MAC due to its superior 
performance and relative simplicity. We 
suspect, however, that a randomly 
heterogeneous model may be a better choice 
for purposes of simulating solute transport at 
the site. 

3. The latter model, calibrated against water 
content data observed during infiltration 
experiment 3, reproduces with fidelity water 
content data observed during infiltration 
experiment 1. 
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